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Ai3STRfiCT

A closed form expression for the modeling of
rectangular spiral inductors to twice the
self-resonant frequency is derived and compared

to experimental results. The mutual. inductance
effects of the ground plane, and phase shift
effects are considered in this analysis.

INTRODUCTION

The departure of the spiraL inductor from
lumped element behavior complicates its use in

MMIC applications. By “unwinding”’ the spiral, it

can be seen that the electrical length of the
spiral will be significant at high frequencies
where the total length approaches a quarter
wavelength, and the point is reached where the

spiral is self-resonant. As a result of this

electrical length, the inside turns have
progressively greater phase lag relative to the

outside turns. This causes the values of
inductance and shunt capacitance in the
equivalent lumped-pi model to have a natural
variation with frequency. This variation of

inductance and capacitance with frequency makes
the standard pi-model equivalent circuit with its
frequency independent elements inherently
inappropriate to represent the spiral inductor.

Table 1 shows a lumped pi model which is used to

represent a spiral inductor across a wide band of

frequencies. Notice that the lumped pi elements
change 20–507. as frequency is increased. This
equivalent circuit was generated using the
techniques that follow.

An approach is now described that accounts

for both the proximity of the ground plane and

the coil electrical length out to twice the
self–resonant frequency of the coil. This
approach uses closed form equations for
inductance and capacitance, and advantage is
taken of the inherently fast computational speed

to compute a pi-model at each frequency. Two-port

parameters then are computed from each pi-model

to accurately represent the coil at each

frequency. Thus, the computations can be included

in a subroutine which gives the low frequency–

inductance of the coil but otherwise directly

represents the coil by two-port s-parameters

without the limitations of one frequency

independent, pi-model to represent the coil for

all the frequencies of interest. Experimental

results are given which agree with the
closed–form calculations within 57. out to

frequencies as high as the self-resonant
frequency, and 10% agreement was found out LO
twice the self-resonant frequency.

THE APPROACH

Grover’s equations [11 give mutual inductance

between elemental line segments. These elemental

relations were used by Greenhouse [2] on each

segment of a square spiral inductor to compute

the totaL inductance of the spiral including the

negative mutual inductance between segments on

opposite sides of the coil. The ideal case of the

inductor in free space with no ground plane

present was considered in the analysis by

Greenhouse. The elementaL reLations of Grover are

used in this approach the same way as they are

used by Greenhouse, but two additional effects

are included. The first is the lowering of the

inductance by the presence of a ground plane,

compared to the inductance without a ground plane

present, as calculated by Greenhouse. The ground

plane lowers the inductance by typically 20% when

the spiral diameter is large compared to the

ground plane distance. To account for the ground

plane, the image of the spiral in the ground

plane (figure 1) is used as a basis for applying

Grover’s elemental relations to each segment of
the image spiral as well as the topside spiral.

The image, which is located at twice the

substrate thickness from the actual spiral,

contributes a net negative mutual inductance

because the current flow is in the opposite

direction in the return path.
ACTUAL SPIRAL

/—

/— ~#,4,v,
1~00 REFLECTED IMAGE

Figure 1. Spirals Produce a Reflected

Image in the Ground Plane

The second effect is that of propagation

delay arvund the spiral, A~ain, Grover’s
elemental relations are used to compute the
mutual inductance between each segment of the
spiral and its image in the groundplane, with the
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phase difference between the currents in each

segment being accounted for by vectorially adding

the mutual inductances. If one assumes unit
current injected in one end of the spiral, then

the induced voltages in each segment have

progressively more phase lag around the spiral

relative to the first segment. Figure 2 shows the

equivalent of two segments separated by a delay.

The two segments have self–inductances L1 and L2

and a mutual inductance M. The loop equation

shows that the self-inductances add directly and

the mutuals add vectorially, where the effective

inductance is M*cos(e) for each component of

mutual inductance. Thus , at higher frequencies

the mutual inductance adds progressively less and

even subtracts from the self–inductance terms.

The relationship of figure 2 allows the vector

sum of all the mutuals to be taken to arrive at

the total inductance of the coil. Therefore, the

mutual coupling of each segment to itself and

every other segment is accounted for in the
presence of the phase shift around the coil.

~q;)..: ‘“PLANE-liL LT = TOTAL
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Figure 2. The Effect of Phase Shift on

the Total Inductance of the Coil

Even and odd-mode capacitances of the coil
are computed from the capacitances of infinite

and sen~i--infinite arrays of strips using Smith’s

[3] fast converging algorithms. The outside and
inside turns have greater capacitances per unit

length, in even mode, because the fringing fields

spread out over a larger distance. In this case

the capacitance of an edge-most strip in a

semi- infinite array is used. In the case of a

middle strip, the even and odd-mode capacitances

of a strip in the infinite array are used. Then

the capacitance of each segment is computed in

the following manner. Using the total length of

the coil as a basis, the capacitance values of

all the segments that constitute one-half of the

coil length are lumped into one of the shunt

capacikaiw in +he pi–mad~l, and *he capacitance
of all the segments of the remaining half are
lumped into the other capacitor in the pi-model.
These resulting capacitance values in the
pi-model are not symmetric. The outside turn has

the most periphery with fringing and is the side

of the coil connected with the larger of the two

capacitors in the pi-model for all practical
frequencies. At very high frequencies the reverse

may be true, but only at several times the

self-resonant frequency, where individual pairs
of turns are approaching the odd–mode case.

Now , both the capacitance values of the

pi-model change with frequency because the even

and odd–mode capacitances of each segment change

the loading on the coil as the phase shift around

the coil varies with Frequency. The frequency
dependence starts at low frequency with

V~=V2.V3 in figure 3 and therefore the low

frequency coil capacitance is the sum of the

even–mode capacitances (of each segment. As the

frequency is increased, VI no longer equals

V’2 and V3 because of phase shift around the

one turn and the odd-mode contribution increases

the effective capacitance. The capacitive

reactance to ground for a particular segment then
is computed as:

Xc = VI / (1 Ie+Iol+Io21).

,O,=v, –v, ~–e
-lb !!2 = v, /&e “, V3=V, fj~

Figure 3. The Effect of Phase Shift

on the Effective Capacitance

to Ground of the Spiral

MODELING DETAILS

The following assumptions are made to

complete the description of the modeling approach:

1) The coil is divided up into discrete

straight 1 ine segments. In the case of a

rectangular spiral each side of the spiral is a

segment. Polygon-shaped and circular coil

geometries also can be analyzed by this technique
by subdivision into the appropriate number of

segments, and by using another of Grover’s
formulations which allc,ws for nonparallel line
segments;

2) The phase shift along each segment is

zero. The phase shift between segments is

computed using the path length around the coil

between the centers of each segment, along with

the propagation velocity determined from the

effective dielectric constant for the microstrip

fornmd from th~ segment width;

3) The phase lag around three or more sides
of the coil is greater than the phase lag
directly across the (coil. Using closed–form

mutual inductance equations assume the fields are

not delayed in time even though there may be

phase differences between the currents giving

rise to the fields. With the curL-ent constrained

to flow around the turns of the spiral, the field

delay across the coil is less than the delay due

to the path length arounci the coil;
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4) Since a full nodal network analysis based

on series and shunt currents for each segment is

not being used, an equivalent capacitance to
ground is computed by taking the magnitude of the

sum of the capacitive current vectors, Ie, Iol ,
and. 102 as shown in figure 3. This
approximation is helped in that VI and
V2 /v3 are the voltages across one turn and
not the voltage across the entire coil.

COMPARISON OF MODELED AND MEASURED RESULTS

Two square spirals, shown in figure 4,
differing in size by 2:1 were analyzed and tested

and the results compared. Inductor A had a
diameter of 400pm, a 20um line width, and a
10pm gap. It was fabricated on GaAs by the
metal liftoff technique with . 75um thick
evaporated gold metallization. Inductor B was
fabricated by the same technique on GaAs with a

much larger diameter of 715pm, a 20pm line
and gap width, and 1.3pm thick gold . The
substrate thicknesses were 100pm and 250~m
respectively (4 and 10 roils). The calculated

s–parameters are shown in table 2 along with the

measured s-parameters. S11 and S22 go through
resonance at 5.0 and 5.5 GHz respectively on

inductor A (table 2A) on both calculated and
measured, within 3 degrees. No optimization was
done on either set of s-parameters. The
calculated s-parameters are as computed from the

closed–form expressions. The results of inductor
B of larger size are in table 2B. S11 and S22

resonances in both the measured and calculated
results likewise agree within 5%. The calculated

angles of all the s–parameters in both cases
compare to the measured within 3 degrees up to

self-resonance. Calculated 15211 was within
5% up to self–resonance and within 10% up to

twice resonance when compared to the measured
!s211.

I

INDUCTOR A

DIAMETER = 400pm
SEGMENTS = 24
WIDTH ~ 20.m
GAP = 10pm
HEIGHT = 4MILS
THICKNESS = 75pm
ER SUB = 129

~111~1111
t----’’’’” ------+

INOUCTOR B

DIAMETER - 715Fm
SEGMENTS : 28
WIDTH = 20gm
GAP – 20,,m
HEIGHT : 10 MILS
THICKNESS = 13.m
ER SUB = 129

Figure 4.
Program Is

Spiral Inductor Model
Tested on Two Different
Size Spirals

SOME EXAMPLE CALCULATIONS

All of the inductance calculations performed
in this paper are based on three equations, all

from Grover. The first is the expression for the

mutual inductance between two parallel
filamentary current conductors of length L(cm)
and distance D(cm) apart.

where M is the mutual inductance in nano–Henries.

This equation applies directly only to cases
where the cross-sectional dimensions of the ‘two

1 ines are small compared to the distances
separating them, such as in the case of the
mutual inductance between a topside spiral
segment and its ground plane reflection. For two

conductors which are closely spaced, such as two
adjacent topside spiral segments, a Geometric
Mean Distance (GMD) must be calculated and used
in place of the center–to-center distance. The
following formula gives the GMD for two parallel

line segments of rectangular cross-section which

are relatively thin compared to their width:

where D is the center–to–center distance.

Third, the GMD of a rectangular cross–section

wire to itself may be approximated by the
following formula:

GMD =

GMD =

where

[e(’i%7+x+l(zEXP Log (D)–

.2235 (W + T) (3)

GMD is in

thickness.

These three

predict precisely

wide variety of

the same units as width and

formulas have been used to

the static inductances of a

microstrip transmission 1 ine

structures which are composed of only parallel or

perpendicular line segments.

To illustrate their use more clearly, these

equations are applied to inductor B (depicted in
figure 4) as follows. First the self inductances

of each straight line segment are computed, and
for the first segment in inductor B the length is

705pm and the width and thickness are 20pm

and lpm respectively. So,

GMD = .2235 (w+T) = .2235(20+1) = 4.6935vm

and using L=705vm and D=4.6935Pm in eqn. f~l
we calculate:

Self Ind = eqn. #1 (L, D) = .8063 nli
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which is the self inductance of segment #1. If

the self inductances of all the other segments

are calculated in a similar manner and added up,

the resulting sum is 10.93 nH.

Next , the mutual inductances between the

topside segments are calculated, using the first

and fifLh segments counting from the outside as
an example. Since the segments are of different

lengths, equation #1 must be applied twice as
shown, where L1 and L5 are the lengths of the 1st

and 5th segments, and M the resulting mutual

inductance between them. We first calculate two

partial values of mutual inductance using GMD

from eqn. #2:

L1 . 705pm L5 = 655~m

GMD = eqn #2(W,D) where W=20~m D.40pm

= 38.90pm

Ml = eqn #1 (L,D) where L.(Ll+L5)/2=680pm

. .3550 nH D=GMD.38.9pm

M2 = eqn #1 (L,D) where L=(L1 – L5)/2.25pm
= .00156 nH D=GMD=38.9wn

M . Ml – M2 . .3535 nH

Similarly the muLuals between each other pair

of segments in the topside spiral are calculated.

For Lhe given 7 turn (28 segment) coil, there are

a total of 84 positive mutual inductances and 196
negative mutual inductances to be calculated for

the topside spiral alone. Hence only the totals

for each will be given:

Positive Mutual Topside = 22.18 nH

Negative Mutual Topside = 7.73 nH

Note that each mutual inductance that is
calculated for each pair of segments is added

twice to arrive at this total, since the mutual

will add to both line segments.

In a similar fashion, the mutual inductance

from the topside coil to its groundplane

reflection also can be calculated, The groundplane

reflection is treated as if it were another

physical spiral, of the same exact dimensions as
the actual spiral, but located at twice the
substrate thickness distant, and with currents

flowing in the opposite direction. The same
formulas used to calculate mutual inductance

between the topside segments also are used here,

with the exception that the GMD need not be

computed, since the segments are so widely

separated. The negative mutual inductance to the

groundplane reflection, consisting of the mutual
inductance between 196 pairs of lines, is
calculated to be 7.27 nH for the given spiral.
Likewise, the positive mutual inductance to the

groundplane reflection also consists of adding
the mutuals between 196 pairs of lines, though
they are further apart, and the result. is a
smaller value of positive mutual inductance due

to the ~roundplane reflection: 5.42 nH. Note that

each mutual inductance in this case is only
counted once, since the reflected spiral is not

in series with the topside spiral.

To get the total low frequency inductance, we

sum all the inductance totals which were

calculated previously:

Total = 10.93 + 22.18 + 5.42 - 7.73 - 7.27
= 23.52 nH total inductance

If the effects of ths groundplane had been

neglected, then terms 3 and 5 would have dropped

out , with the resulting inductance having been

25.38 nH, a 7.9% error. For the same size spiral

on a 4 mil thick ( 100pm) substrate, the

percentage error would increase to 38%, if the

groundplane effects were neglected.

As shown in table 1, the inductance also is

seen to decrease radically with increasing

frequency. Since the capacitive and inductive

components are being treated separately in this
analysis, the decrease in inductance is not due

to the coil looking more capacitive at higher

frequencies. Instead the change is due purely to

phase shift effects along the spiral length which

cause the voltages imposed by the out of phase

currents to not add directly. This is modeled by

add ing all the mutual inductances vectorially,

with the assumption that current is unity (i.e. ,

constant magnitude) throughout the coil. The

phase shift from segment to segment MAY be

computed by using standard formulas for effective

dielectric constant to calculate the electrical

length of each segment at the frequencies of

interest. Examination of table 1 shows the phase

shift has a marked effect on the total perceived

inductance, causing it to decrease 25% in this

case at twice the resonant frequency.

Capacitance calculations were accomplished by

translating a FORTRAN program published by Smith

[3] which uses closed fc}rm techniques to compute

even and odd mode capacitances for both the cases

of a center line in an infinite array of lines,
and the end line in a semi–infinite array of

lines. For the example j.nductor B, these numbers

were computed to be:

In Between Turns:
Center Line--Even Mode Ground Cap . .18 pF/cm
Center Line--Odd Fiode Ground Cap . 2.46 pF/cm

Innermost/Outemost Turns:

End Line---Even Mode Ground Cap . .55 pF/cm
End Line---Odd Mode Ground Cap . 1.69 pF/cm

These even and odd-mode capacitances are
translated into ground and interline ~ouPlin~
capacitors by the simple relations:

c –co (4)
c =C e.—

gecc 2

Finally the equivalent capacitance to ground
for each segment ia calculated as a function of

frequency using the technique previously
described. The resulting apparent changes in
capacitance in the lumpecl pi model with change in

frequency are shown in table 1.
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CONCLUSION

The techniques shown in this paper provide a

very accurate modeling tool for rectangular
spiral inductors, and at a very low cost in

computation time due to the closed form nature of

the approach. Pucel stated [4] that in general a

closed form approach was practical for the

evaluation of low frequency inductance, but that
the invariant lumped–pi equivalent circuit was an

inadequate model over a wide frequency range.

Here it has been shown that a lumped–pi

equivalent circuit whose components all vary with

Table 2A. Measured and Calculated
MEASURED

FREQ Sll S21 S12 S22
GHz flag Ang Mag Ang flag ~ng Mag frog
-----------------------------------------------------

0.5 .136 54. : .93b -10.9 .93b -10.9 . 155 54.7
1,0 .277 54.4 .907 -20.9 .?04 -21.0 .277 5Z.5
1.5 .386 49.2 ah? -30.2 .867 -30.2 .388 49.8
2.0 .481 43.2 .823 -38. h .823 -38.6 . 484 42.6
2.5 .557 37.2 .77? -46.4 .779 -4&.4 .5hl X!i. h
3.0 .611 30.6 .741 -53.9 .741 -53.8 .615 29.4
3.5 .451 23.2 .706 -61.3 .706 -61.4 ,653 23,5
4.0 .685 14,7 .669 -b8. ? .670 -6?.0 ,688 17.2
4.5 .724 5.9 .b31 -76.9 ,630 -74,7 ,729 10.6
5.0 . 7h6 -1.6 .583 -B4,6 .585 -84.6 .773 3.5
5.5 .800 -7.9 .532 -90.8 .532 -90.9 .S06 -3.4
6.0 .825 -13.1 .499 -95.6 .499 -95.3 .820 -8.5
6.5 .841 -19.2 .485 -101.3 .485 -101,1 .850 -12,5
7.0 .855 -26.5 .45& -109.2 .458 -109.2 .871 -17.7
7.5 .864 -33,3 .409 -115.0 .409 -115.3 .877 -22.7
8.0 .879 -37.7 .382 -118.1 .380 -118.0 .885 -25.8

frequency can, instead, be used to provide a good

approximation to the spiral inductor. While the

approach taken in this paper is similar to the

Greenhouse/Grover approach, it also includes

groundplane effects, capacitance calculations,

and the effects of phase shift on inductance and
capacitance values. When compared to

two–dimensions 1 field–theoretical approaches,

such as [51, the computation time is much less.

Thus , the technique appears opt imum for

Computer–Aided Design (CAD) approaches to circuit

simulation, where fast computation time and

accuracy are both necessary.

S-Parameters for Inductor A

CALCULATED
FREQ ’511 S21 S12 S22
(3Hz Flag Ang tlag Ong Hag Ang tlag Ang
-----------------------------------------------------

0.5 . 159 55.9 .727 -10.7 .927 -10.7 .158 56.5
1.0 .288 56.2 .1398 -21.0 .898 -21.0 .286 57.3
1.5 .406 50,0 ,857 -30.7 .857 -30.7 .405 51.8
2.0 .505 42.6 .808 -39.7 .808 -39.7 .505 44.9
2.5 .597 35.1 ,757 -48.1 .757 -48. i .586 38.0
3.0 .453 27.9 ,708 -55.9 .708 -55. ? .452 31.2
3.5 .706 20.9 .661 -b3.2 .661 -43.2 .705 24.7
4.0 .748 14.2 .618 -70.1 .618 -70.1 .748 18,4
4.5 .783 7.7 .57% -76.7 ,578 -7b. 7 ,783 12.2
5.0 ,812 1.4 .542 -B3.1 .542 -83,1 .,811 6.2

5.5 .83.4 -4.8 .509 -89.4 .509 -89.4 .835 ,2

6.0 ,856 -11.0 .478 -?5.6 ,478 -95.6 .855 -5.7

b.5 .873 -17.0 .450 -101.7 .450 -101.7 .872 -11.7
7.0 .887 -23.0 .424 -107.7 .424 -107.7 .887 -17.6
7.5 .900 -28.9 ,399 -113.7 .397 -113.7
8.0

.900 -23,5
.912 -34.7 .375 -119.6 .375 -119.6 .911 -29.4

Table 2B. Measured and Calculated S–Parameters for Inductor B

0.25 .329 55.3 .878 -20.9 .876 -20.7 .331 5.5,1
0.50 .559 43.9 .7/)6 -37,5 .767 -37. b .559 45.7
0.75 .703 32.5 .652 -50.5 .655 -50.4 .703 35.1
1,00 .793 23.4 .5$2 -60-.4 .561 -bO.3 .795 2b.9
1,25 .849 15.8 .484 -68.3 .485 ‘68. B ,851 20.1
1.50 .8!37 9,1 .425 -75.3 .422 -75.3 .8S9 14.0
1,75 .914 3$3 ,377 -B1. l .37b -!31.2 .91h B.8
2.00 .934 -1.8 .337 -86.4 .338 -86.4 .935 4.1
2,25 .948 -4.5 .308 -90. ? .307 -91.2 .949 -.1
2.50 .953 -11,0 .281 -76.1 .282 -96.2 ,962 -4.5

2.75 .962 -15.8 .260 -100.6 .258 -100t7 .963 -8.5

3.00 .957 -20.7 .242 -105.4 .243 -105.7 .9’63 -12. h
3.25 .957 -25.4 .232 -109.6 .232 -109.7 .9b5 -16.1
3.50 .955 -30.7 .224 -114.4 .224 -114.0 .940 -20.0
3,75 ,951 -36,3 .218 -118.9 ,217 -119,0 .958 -24.0
4.00 .945 -42.5 .219 -125.2 .219 -124.4 .954 -28.1

Table 1. Calculated Pi-M-odel Shows a

Natural Variation With Frequency

INDUCTORB

FREQ. C1-j)F R-OHM L-nH C2-PF
--------------------------------------------------- .

.25 ghz .219 9,22 23.58 .148
,50 ,ghz . 2z5 9.42 23.51 .152
.75 ,~hz .233 9.62 2?.41 .158

1.08 qhz .244 9.82 23.26 .166
1.25 ,3hz .255 10.02 23.t3~ .176
1.58 ‘gtlz .263 10.22 22.35 .136
1.75 ,ghz .283 10.41 22.59 .193
2.00 ,ghz .237 10.60 22.29 .210
2.25 ,ghz .312 10.79 21.95 .22>
2.5!3 ,ghz .32s 10,9s 21.5S .~~~
2.75 ,3hz .343 11.17 21.18 .250
3.!3EI ,3hz .259 11.26 20.75 .264
2.25 .:l, =$ .27G 11.54 2Q.30 .279

3.50 ,ghz .392 11.72 19.82 ,293
3.75 ,3hz .409 11.91 19.32 .307’
4.00 ghz . q~y 12.09 18.:30 .322

0.25 . 320 55,4
0,50 .548 45.4
0,75 .b9b 34.5
1.00 .787 25.4
1,25 .844 17,7
1.50 .891 11.0
1.75 .905 4,9
2.00 .923 9
2,25 .935 -;:5
2.50 . 745 -11,9
2,75 , 9S2 -17,4
3.00 . 958 -22.8
3,25 .9b2 -28.3
3.50 .?bb -33,8
3,75 .969 -37.3
4.00 .971 -44,7

.871 -19.7

. 7b7 -36,3

.b57 -49,2
,5b3 -5?. 1
.489 -b7. 1
,431 -73.8
,3Rb -79.8
.349 -85.3
.520 -90. b
.296 -95.7
.276 -100.7
.259 -105s8
.244 -110,8
.231 -115,9
.220 -121.1
.210 -12b.2

.871 -19.7

.7b7 -34.3

. b57 -49.2

.5b3 -59.1

.489 -b7. 1

.431 -73.8

.386 -79.8

.349 -85.3

.320 -?O. b

.296 -95.7

.276 -100.7

.259 -105,8

.244 -110,8
,231 -115.9
.220 -121.1
.210 -i2b.2

,320 5b.1
.548 46.8
.696 36,6
.787 28.3
.844 21.4
.881 15.6
.905 10,4
,923 5.6
.935 1.0
.944 -3.6
.952 -8.1
.957 -12.6
.9b2 -17,2
.965 -21,8
.9b8 -2b.5
.971 -31.3
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