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ABSTRACT

A closed form expression for the modeling of
rectangular spiral inductors to twice the
self-resonant frequency is derived and compared
to experimental results. The mutual inductance

effects of the ground plane, and phase shift
effects are considered in this analysis.
INTRODUCTION
The departure of the spiral inductor from

lumped element behavior complicates its use in
MMIC applications. By “unwinding” the spiral, it
can be seen that the electrical length of the
spiral will be significant at high frequencies

where the total length approaches a quarter
wavelength, and the point is reached where the
spiral is self-resonant. As a result of this
electrical length, the inside turns  have

progressively greater phase lag relative to the

outside turns. This causes the values of
inductance and shunt capacitance in the
equivalent lumped-pi model to have a natural
variation with frequency. This variation of

inductance and capacitance with frequency makes
the standard pi-model equivalent circuit with its
frequency independant elements inherently
inappropriate to represent the spiral inductor.
Table 1 shows a lumped pi model which is used to
represent a spiral inductor across a wide band of

frequencies. Notice that the lumped pi elements
change 20-50% as frequency is increased. This
equivalent circuit was generated using the

techniques that follow.

An approach is now described that accounts
for both the proximity of the ground plane and

the coil electrical length out to twice the
self-resonant frequency of the coil. This
approach uses closed form equations for
inductance and capacitance, and advantage is

taken of the inherently fast computational speed
to compute a pi-model at each frequency. Two-port
parameters then are computed from each pi-model
to accurately represent the coil at each
frequency. Thus, the computations can be included
in a subroutine which gives the low frequency-
inductance of the coil but otherwise directly
represents the coil by two-port s-parameters
without the limitations of one frequency
independant, pi-model to represent the coil for
all the frequencies of interest. Experimental
results are given which agree with the

closed-form calculations within 5% out to
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self-resonant
found out to

frequencies as high as the
frequency, and 10% agreement was
twice the self-resonant frequency.

THE APPROACH

give mutual inductance
between elemental line segments. These elenental
relations were used by Greenhouse [2] on each
segment of a square spiral inductor to compute
the total inductance of the spiral including the
negative mutual inductance between segments on
opposite sides of the coil. The ideal case of the

Grover's equations [1]

inductor in free space with no ground plane
present was considered in the analysis by
Greenhouse. The elemental relations of Grover are

used in this approach the same way as they are
used by Greenhouse, but two additional effects
are included. The first is the lowering of the
inductance by the presence of a ground plane,
compared to the inductance without a ground plane
present, as calculated by Greenhouse. The ground
plane lowers the inductance by typically 20% when
the spiral diameter 1is large compared to the
ground plane distance. To account for the ground
plane, the image of the spiral in the ground
plane (figure 1) is used as a basis for applying
Grover's elemental relations to each segment of
the image spiral as well as the topside spiral.

The image, which is located at twice the
substrate thickness from the actual spiral,
contributes a net negative mutual inductance
because the current flow is in the opposite
direction in the return path.
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Figure 1. Spirals Produce a Reflected
Image in the Ground Plane
The second effect 1is that
delay around the spiral.
elemental relations are wused to compute the
mutual inductance between each segment of the
spiral and its image in the groundplane, with the

of propagation
Again, Grover's



phase difference between the currents in each
segment being accounted for by vectorially adding

the mutual inductances. If one assumes unit
current injected in one end of the spiral, then
the induced voltages 1in each segment have

progressively more phase lag around the spiral
relative to the first segment. Figure 2 shows the
equivalent of two segments separated by a delay.
The two segments have self-inductances L1 and L2
and a mutual inductance M. The loop equation
shows that the self-inductances add directly and
the mutuals add vectorially, where the effective
inductance is M*cos(9) for each component of
mutual inductance. Thus, at higher frequencies
the mutual inductance adds progressively less and
even subtracts from the self-inductance terms.
The relationship of figure 2 allows the vector
sum of all the mutuals to be taken to arrive at

the total inductance of the coil. Therefore, the
mutual coupling of each segment to itself and
every other segment 1is accounted for in the
presence of the phase shift around the coil.
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Figure 2. The Effect of Phase Shift on
the Total Inductance of the Coil

Even and odd-mode capacitances of the coil
are computed from the capacitances of infinite
and semi-infinite arrays of strips using Smith's
[3] fast converging algorithms. The outside and
inside turns have greater capacitances per unit
length, in even mode, because the fringing fields
spread out over a larger distance. In this case
the capacitance of an edge-most strip in a
semi-infinite array is wused. In the case of a
middle strip, the even and odd-mode capacitances
of a strip in the infinite array are used. Then
the capacitance of each segment is computed in
the following manner. Using the total length of
the coil as a basis, the capacitance values of
all the segments that constitute one-half of the
coil length are lumped into one of the shunt
eapacitors in the pi-moedel, and the capacitance
of all the segments of the remaining half are
lumped into the other capacitor in the pi-model.
These resulting capacitance values in the
pi-model are not symmetric. The outside turn has
the most periphery with fringing and is the side
of the coil connected with the larger of the two
capacitors in the pi-model for all practical
frequencies. At very high frequencies the reverse
may be true, but only at several times the
self-resonant frequency, where individual pairs
of turns are approaching the odd-mode case.
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Now, both the capacitance wvalues of the
pi-model change with frequency because the even
and odd-mode capacitances of each segment change
the loading on the coil as the phase shift around

the coil varies with frequency. The frequency
dependence starts at low frequency with
Vi=Vy=V3 in figure 3 and therefore the Ilow
frequency c¢oil capacitance is the sum of the
even-mode capacitances of each segment. As the
frequency 1is increased, V; no longer equals

Vy and V3 because of phase shift around the
one turn and the odd-mode contribution increases
the effective capacitance. The capacitive
reactance to ground for a particular segment then
is computed as:

XC = Vl / (l Ie+Iol+I02|).
Vi =V £28
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Figure 3. The Effect of Phase Shift
on the Effective Capacitance

to Ground of the Spiral

MODELING DETAILS

The following assumptions are made to
complete the description of the modeling approach:

1) The coil 1is divided up 1into discrete
straight line segments. In the «case of a
rectangular spiral each side of the spiral is a
segment . Polygon-shaped and circular coil
geometries also can be analyzed by this technique
by subdivision into the appropriate number of
segments, and by wusing another of Grover's
formulations which allows for nonparallel line
segments;

2) The phase shift along each segment is
zero. The phase shift Dbetween segments is
computed using the path length arcund the coil
between the centers of each segment, along with
the propagation velocity determined from the
effective dielectric constant for the microstrip
formed from the gegment width:

3) The phase lag around three or more sides
of the coil 1is greater than the phase lag
directly across the «coil. Using closed-form
mutual inductance equations assume the fields are
not delayed in time even though there may be
phase differences between the currents giving
rise to the fields. With the current constrained
to flow around the turns of the spiral, the field
delay across the coil is less than the delay due
to the path length around the coil;



4) Since a full nodal network analysis based
on series and shunt currents for each segment is
not being wused, an equivalent capacitance to
ground is computed by taking the magnitude of the

sum of the capacitive current vectors, Ie, Toq,
and- lop, as shown in  figure 3. This
approximation is helped in that Vi and
V,/V3 are the voltages across one turn and

not the voltage across the entire coil.

COMPARISON OF MODELED AND MEASURED RESULTS

Two square spirals, shown in figure 4,
differing in size by 2:1 were analyzed and tested
and the results compared. 1Inductor A had a
diameter of 400um, a 20um line width, and a
10uym gap. It was fabricated on GaAs by the
metal liftoff technique with .75um thick

evaporated gold metallization. Inductor B was
fabricated by the same technique on GaAs with a

much larger diameter of 715um, a 20um line
and gap width, and 1.3um thick gold. The
substrate thicknesses were 100um and 250um
respectively (4 and 10 mils). The calculated

s-parameters are shown in table 2 along with the
measured s-parameters. S11 and S22 go through
resonance at 5.0 and 5.5 GHz respectively on
inductor A (table 2A) on both calculated and
measured, within 3 degrees. No optimization was
done on either set of s—-parameters. The
calculated s-parameters are as computed from the
closed-form expressions. The results of inductor
B of larger size are in table 2B. S11 and S22
resonances in both the measured and calculated
results likewise agree within 5%. The calculated
angles of all the s-parameters in both cases
compare to the measured within 3 degrees up to
self-resonance. Calculated |S21] was within
5% up to self-resonance and within 10% up to
twice resonance when compared to the measured
|s21].
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Figure 4. Spiral Inductor Model
Program Is Tested on Two Different
Size Spirals
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SOME EXAMPLE CALCULATIONS

All of the inductance calculations performed
in this paper are based on three equations, all
from Grover. The first is the expression for the
mutual inductance between two parallel
filamentary current conductors of length L{cm)
and distance D(cm) apart.

where M is the mutual inductance in nano-Henries.
This equation applies directly only to cases
where the cross-sectional dimensions of the “two
lines are small compared to the distances
separating them, such as in the case of the
mutual inductance between a topside spiral
segment and its ground plane reflection. For two
conductors which are closely spaced, such as two
adjacent topside spiral segments, a Geometric
Mean Distance (GMD) must be calculated and used
in place of the center-to-center distance. The
following formula gives the GMD for two parallel
line segments of rectangular cross-section which
are relatively thin compared to their width:

[ 2

L ./ L 2

L LY_ | p®+ D

M o= 2L [ Loge<D L D2> 1 +—L2 E] &Y

where D is the center-to-center distance.

Third, the GMD of a rectangular cross-section
wire to itself may be approximated by the
following formula:

GMD = EXP|Log (D)-| (D 24 V4 + D6+ )2
12\W 60\ W 168\W

GMD = .2235 (W + T) (3>
where GMD is in the same units as width and
thickness.

These three formulas have been wused to
predict precisely the static inductances of a
wide variety of microstrip transmission line

structures which are composed of only parallel or
perpendicular line segments.

To illustrate their use more clearly, these
equations are applied to inductor B (depicted in
figure 4) as follows. First the self inductances
of each straight line segment are computed, and
for the first segment in inductor B the length is

705ym and the width and thickness are 20um
and lym respectively. So,

GMD = .2235 (W+T) = .2235(20+1) = 4.6935um
and using L=705ym and D=4.6935um in eqn. #1

we calculate:

Self Ind = eqn. #1 (L, D) = .8063 nH



which is the self inductance of segment #1. 1f
the self inductances of all the other segments
are calculated in a similar manner and added up,
the resulting sum is 10.93 nH.

Next, the wmutual inductances between the
topside segments are calculated, using the first
and fifth segments counting from the outside as
an example. Since the segments are of different
lengths, equation #1 must be applied twice as
shown, where L1 and L5 are the lengths of the 1st
and 5th segments, and M the resulting wmutual
inductance between them. We first calculate two

partial values of mutual inductance wusing GMD
from eqn. #2:

L1 = 705um L5 = 655um

GMD = eqn #2(W,D) where W=20um D=40um

= 38.90um
My = eqn #1 (L,D) where L=(L1+L5)/2=680um
.3550 nH D=GMD=38.9um
My = eqn #1 (L,D) where L=(L1 - L5)/2=25um
= ,00156 nH D-=GMD=38.9%unm
M =M - My = .3535 nH

Similarly the mutuals between each other pair
of segments in the topside spiral are calculated.
For the given 7 turn (28 segment) coil, there are
a total of 84 positive mutual inductances and 196
negative mutual inductances to be calculated for
the topside spiral alone. Hence only the totals
for each will be given:

Positive Mutual Topside = 22.18 nH

Negative Mutual Topside = 7.73 nH

Note that each mutual inductance that is
calculated for each pair of segments is added

twice to arrive at this total, since the mutual

will add to both line segments.

In a similar fashion, the mutual inductance
from the topside coil to its groundplane
reflection also can be calculated. The groundplane
reflection is treated as if it were another
physical spiral, of the same exact dimensions as
the actual spiral, but 1located at twice the
substrate thickness distant, and with currents
flowing in the opposite direction. The same
formulas wused to calculate mutual inductance
between the topside segments also are used here,
with the exception that the GMD need not be

computed, since the segments are so widely
separated. The negative mutual inductance to the
groundplane reflection, consisting of the mutual
inductance Dbetween 196 pairs of lines, is

calculated to be 7.27 nH for the given spiral.

Likewise, the positive mutual inductance to the
groundplane reflection also consists of adding
the mutuals between 196 pairs of lines, though
they are further apart, and the result is a

smaller value of positive mutual inductance due
to the groundplane reflection: 5.42 nH. Note that
each mutual inductance in this case is only
counted once, since the reflected spiral is not
in series with the topside spiral.
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To get the total low frequency inductance, we

sum all the inductance totals which were
calculated previously:
Total = 10.93 + 22.18 + 5.42 - 7.73 - 7.27
= 23.52 nH total inductance

1f the effects of the groundplane had been
neglected, then terms 3 and 5 would have dropped
out, with the resulting inductance having been
25.38 nH, a 7.9% error. For the same size spiral
on a 4 mnil thick (100pm) substrate, the
percentage error would increase to 38%, if the
groundplane effects were neglected.

the inductance also 1is
seen to decrease radically with 1increasing
frequency. Since the capacitive and inductive
components are being treated separately in this
analysis, the decrease in inductance is not due
to the coil looking more capacitive at higher
frequencies. Instead the change is due purely to
phase shift effects along the spiral length which
cause the voltages imposed by the out of phase
currents to not add directly. This is modeled by
adding all the mutual inductances vectorially,
with the assumption that current is unity (i.e.,
constant magnitude) throughout the coil. The
phase shift from segment to segment may be
computed by using standard formulas for effective
dielectric constant to calculate the electrical
length of each segment at the frequencies of
interest. Examination of table 1 shows the phase
shift has a marked effect on the total perceived
inductance, causing it to decrease 25% in this
case at twice the resonant frequency.

As shown in table 1,

Capacitance calculations were accomplished by
translating a FORTRAN program published by Smith
[3] which uses closed form techniques to compute
even and odd mode capacitances for both the cases
of a center line in an infinite array of lines,
and the end line in a semi-infinite array of
lines. For the example inductor B, these numbers
were computed to be:

In Between Turns:

Center Line--Even Mode Ground Cap = .18 pF/cm
Center Line--0dd Mode Ground Cap = 2.46 pF/cm
Innermost/Outermost Turns:
End Line--Even Mode Ground Cap = .55 pF/cm
End Line--0dd Mode Ground Cap = 1.69 pF/cm
These even and odd-mode capacitances are
translated into ground and interline coupling
capacitors by the simple relations:
cC -cC (&)
cC =¢ ¢ =-2—.=
g e c 2

Finally the equivalent capacitance to ground
for each segment is calculated as a function of
frequency using the technique previously
described. The resulting apparent changes in
capacitance in the lumped pi model with change in
frequency are shown in table 1.



CONCLUSION

The techniques shown in this paper provide a
very accurate modeling tool for rectangular
spiral inductors, and at a very low cost in
computation time due to the closed form nature of
the approach. Pucel stated [4] that in general a
closed form approach was practical for the
evaluation of low frequency inductance, but that

frequency can, instead, be used to provide a good
approximation to the spiral inductor. While the
approach taken in this paper is similar to the
Greenhouse/Grover approach, it also includes
groundplane effects, capacitance calculations,
and the effects of phase shift on inductance and
capacitance values. When compared to
two-dimensional field-theoretical approaches,
such as [5], the computation time is much less.

the invariant lumped-pi equivalent circuit was an Thus, the technique appears optimum for
inadequate model over a wide frequency range. Computer—-Aided Design (CAD) approaches to circuit
Here it has been shown that a lumped-pi simulation, where fast computation time and
equivalent circuit whose components all vary with accuracy are both necessary.
Table 2A. Measured and Calculated S-Parameters for Inductor A
MEASURED CALCULATED
FRER st1 §21 512 §22 FRER Sit 521 S12 522
GHz Mag Ang Mag Ang Mag Ang Mag Ang GHz Mag Ang Mag Ang Mag Ang Mag Ang
8.5 136 54.3 .936 -18.9 .936 -18,9 .155 54.9 e.5 ,159 55.9 927 -18.7 .92 -18.7 .158 56.5
1.0 277 54.4 987 -28.9 206 -21.@ .277 535.95 1.0 .288 S54.2 .B9B -2t.0 .B98 -21.8@ 288 157.3
1.5 386 49.2 867 -30.2 .847 -30.2 .3BB 49.8 1.5 .484 50.8 .837 -30.7 857 -38.7 .485 ©51.8
2.8 481 43.2 .B23 -38.6 .B23 -38.6 .4B4 42.6 2.8 .3085 42.6 .80B -39.7 g8@8 ~-39.7 5085 44.9
2.5 557 37.2 779 -46.4 779 -46.4 .561 35.6 2.5 .587 35.1 .757 -48.1 757 -48.1 586 3IB.@
3.0 411 30,6 741 -533.9 741 -33.8 .615 29.4 3.8 453 27.9 ,7@8 -955.9 788 -55.9 .652 31.2
3.5 .691 23.2 706 -61.3 .7@86 -61.4 ,653 23.5 3,5 706 28.9 .661 -63.2 661 -63.2 783 24.7
4.0 685 14.7 669 -48.9 670 ~-69.8 .468BB 17.2 4.9 .748 14.2 .618 -70.1 618 -7@8.1 748 18.4
4.5 .724 5.9 631 -76.9 L6300 -76.7 .729 1@.6 4,5 .783 7.7 .578 ~76.7 .,578B -76.7 .783 12,2
5.8 766 -1.6 583 -B4.4 .58 -B4.6 .773 3.5 5.8 .Bt2 1.4 .542 ~B3.,1 .9542 -B3I.1 _.811 b.2
5.9 see -7.9 532 =-98.8 .532 -90.9 .8846 -3.4 5.5 .834 -4.8 .5089 -89.4 .5@9 -B9.4 835 W2
6.0 825 ~13.1 .499 -95.6 .499 -95.3 828 -8.95 4.8 ,856 -11.0 .478 -95.6 .,478 -95.6 .BSS -5.7
6.5 .BAY1 -19.2 ,485 -181.3 .485 -18l.1 .858 -12.5 6.5 .873 -17.8 .450 -1@1.7 .458 -181.7 .872 -11.7
7.0 .855 -26.5 .456 -1@9.2 .438 -109.2 .871 -17.7 7.9 .BB7 -23.8 .424 -107.7 .424 -187.7 .B87 -17.6
7.3 .Bé4 -33.3 .409 -11D.@ 409 -115.3 .877 -22.7 7.5 .980 -28.9 .399 -113.7 .399 -113.7 998 -23.5
8.8 .879 -37.7 .3B2 -118.1 .38@ -118.2 .88J -25.8 8.8 .912 -34.7 .375 -119.6 .375 -119.6 .911 -29.4
Table 2B. Measured and Calculated S-Parameters for Inductor B
¢.25 .329 55.3 .878 -20.9 .B876 -28.7 .331 O5éb.1 @.23 .320 G55.4 .871 -19.7 .B71 -19.7 .328 G5é.i
8.58 .559 43.9 .766 -37.5 .767 ~37.6 ,559 45.7 0.50 .548 45.4 ,767 -36.3 .767 -36.3 .548 46.8
.75 .783 32.5 .632 -5B8.5 .655 -5B.4 ,783 3I5.1 .75 .b696 34.5 .b657 -49.2 .b657 ~49.2 .b9b6 36,6
1.8 .793 23.4 .3562 -68=4 .361 -68.3 L7935 26.9 1.0 .787 25.4 .563 -59.1 .563 -59.t ,787 28.3
1.25 .B49 15.8 .484 -48.3 .485 -68.8 .BS1 28.1 1.25 .844 17.7 .48B% -67.1 .489 -67.1 .B44 21.4
1.50 .887 9.1 .425 -75.3 .422 -75.3 .8B9? 4.0 1.50 .88t 1t.@ .431 -73.8 .43t -73.8 .BBl 15.6
1,75 .914 3.3 .377 -Bi.i .376 -8B1.2 .91 B.8 1.75 .9@5 4,9 ,3B6 -79.8 ,3IB6 -79.8 .995 10.4
2.08 .934 -1.8 .337 =-Bb.4 .338 -Bb6.4 .935 4.1 2.88 .923 ~.% .349 ~B5.3 .349 -85.3 .923 5.6
2.25 .948 =-6.5 .308 -90.9 .3@7 =-91.2 949 -.1 2,25 .935 -6.5 .328 -9@.6 .320 -9@.6 .935 1.0
2.58 .953 -11.8 .281 -96.1 ,282 -96.2 .962 -4.5 2.58 .945 -11.9 .294 ~-95.7 .296 -95.7 .944 -3.4
2.75 .962 -15.8 .268 -18@.6 .258 -1@8.7 .963 -8.3 2.75 .952 -17.4 ,276 -10@.7 .276 -1B8.7 .952 -B.1i
3,80 .957 -28.7 .242 -105.4 .243 -185.7 963 -12.6 3.00 .958 -22.8 .259 -1@5.8 .259 ~105.8 .957 -12.6
3.25 .957 -25.4 .232 -1B9.6 .232 -189.7 .965 -16.1 3,29 .962 -28.3 .244 -1i@.8B .244 -110.8 .982 -17.2
3.50 .955 -3@.7 .224 -114.4 ,224 -114.0 .%6@ -20.0 3.50 .946 -33.8B .231 -115.9 .231 -115.9 .965 -21.8
3.75 .951 -36.3 .218 -118,9 .217 -119.8 .938 -24.9 3.73  .969 -39.3 ,2208 -121.1 ,220 -121.1 ,968 -26.5
4,00 .945 -42.5 .219 -125.2 .219 -124.4 .934 -28.1 4,00 .971 -44,7 .210 -126.2 .210 -126.2 .971 -31.3
Table 1. Calculated Pi-Model Shows a
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